Efficient VLSI Implementation of Modulo 2n 1 Addition and Multiplication
نویسنده
چکیده
New VLSI circuit architectures for addition and multiplication modulo 2 1 and 2 1 are proposed that allow the implementation of highly efficient combinational and pipelined circuits for modular arithmetic. It is shown that the parallel-prefix adder architecture is well suited to realize fast end-around-carry adders used for modulo addition. Existing modulo multiplier architectures are improved for higher speed and regularity. These allow the use of common multiplier speed-up techniques like Wallace-tree addition and Booth recoding, resulting in the fastest known modulo multipliers. Finally, a high-performance modulo multiplier-adder for the IDEA block cipher is presented. The resulting circuits are compared qualitatively and quantitatively, i.e., in a standard-cell technology, with existing solutions and ordinary integer adders and multipliers.
منابع مشابه
Efficient VLSI Implementation of Modulo (2^n=B11) Addition and Multiplication
New VLSI circuit architectures for addition and multiplication modulo (2n 1) and (2n + 1) are proposed that allow the implementation of highly efficient combinational and pipelined circuits for modular arithmetic. It is shown that the parallel-prefix adder architecture is well suited to realize fast end-around-carry adders used for modulo addition. Existing modulo multiplier architectures are i...
متن کاملضربکننده و ضربجمعکننده پیمانه 2n+1 برای پردازنده سیگنال دیجیتال
Nowadays, digital signal processors (DSPs) are appropriate choices for real-time image and video processing in embedded multimedia applications not only due to their superior signal processing performance, but also of the high levels of integration and very low-power consumption. Filtering which consists of multiple addition and multiplication operations, is one of the most fundamental operatio...
متن کاملEfficient VLSI Implementation of Modulo (2 1) Addition and Multiplication
New VLSI circuit architectures for addition and multiplication modulo (2 1) and (2 + 1) are proposed that allow the implementation of highly efficient combinational and pipelined circuits for modular arithmetic. It is shown that the parallel-prefix adder architecture is well suited to realize fast end-around-carry adders used for modulo addition. Existing modulo multiplier architectures are imp...
متن کاملA Systolic Architecture for Modulo Multiplication
With the current advances in VLSI technology, traditional algorithms for Residue Number System (RNS) based architectures should be reevaluated to explore the new technology dimensions. In this brief, we introduce A @(log n ) algorithm for large moduli multiplication for RNS based architectures. A systolic array has been designed to perform the modulo multiplication Algorithm. The proposed modul...
متن کاملEfficient Arithmetic in GF(2n) through Palindromic Representation
finite field representation, optimal normal basis, palindromic representation A representation of the field GF(2n) for various values of n is described, where the field elements are palindromic polynomials, and the field operations are polynomial addition and multiplication in the ring of polynomials modulo x2n+1–1. This representation can be shown to be equivalent to a field representation of ...
متن کامل